Diophantine inequalities with a non-integral exponent
نویسندگان
چکیده
منابع مشابه
Binary words with a given Diophantine exponent
We prove that every real number ξ > 1 is the Diophantine exponent of some binary word ω. More precisely, we show that Dio(ω) = ξ for ω = 101102103 · · · , where kn = [ξ] for ξ > 2, kn = [ν] with ν = (−ξ + 1 + √ 6ξ − 3ξ2 + 1)/(4− 2ξ) for 1 < ξ < 2, and kn = n for ξ = 1.
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملSymmetric Modular Diophantine Inequalities
In this paper we study and characterize those Diophantine inequalities axmod b ≤ x whose set of solutions is a symmetric numerical semigroup. Given two integers a and b with b = 0 we write a mod b to denote the remainder of the division of a by b. Following the notation used in [8], a modular Diophantine inequality is an expression of the form ax mod b ≤ x. The set S(a, b) of integer solutions ...
متن کاملDiophantine Inequalities on Projective Varieties
then the set of solutions of (1.1) lies in the union of finitely many proper linear subspaces of P. We give an equivalent formulation on which we shall focus in this paper. Let {l0, . . . , lN} be the union of the sets {l0v, . . . , lnv} (v ∈ S). Define the map φ : P → P by y 7→ ( l0(y) : · · · : lN(y) ) . Put X := φ(P); then X is a linear subvariety of P of dimension n defined over K. Write xi...
متن کاملDiophantine Inequalities in Function Fields
This paper develops the Bentkus-Götze-Freeman variant of the DavenportHeilbronn method for function fields in order to count Fq[t]-solutions to diagonal Diophantine inequalities in Fq((1/t)).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1968
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-14-4-333-345