Diophantine inequalities with a non-integral exponent

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary words with a given Diophantine exponent

We prove that every real number ξ > 1 is the Diophantine exponent of some binary word ω. More precisely, we show that Dio(ω) = ξ for ω = 101102103 · · · , where kn = [ξ] for ξ > 2, kn = [ν] with ν = (−ξ + 1 + √ 6ξ − 3ξ2 + 1)/(4− 2ξ) for 1 < ξ < 2, and kn = n for ξ = 1.

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

Symmetric Modular Diophantine Inequalities

In this paper we study and characterize those Diophantine inequalities axmod b ≤ x whose set of solutions is a symmetric numerical semigroup. Given two integers a and b with b = 0 we write a mod b to denote the remainder of the division of a by b. Following the notation used in [8], a modular Diophantine inequality is an expression of the form ax mod b ≤ x. The set S(a, b) of integer solutions ...

متن کامل

Diophantine Inequalities on Projective Varieties

then the set of solutions of (1.1) lies in the union of finitely many proper linear subspaces of P. We give an equivalent formulation on which we shall focus in this paper. Let {l0, . . . , lN} be the union of the sets {l0v, . . . , lnv} (v ∈ S). Define the map φ : P → P by y 7→ ( l0(y) : · · · : lN(y) ) . Put X := φ(P); then X is a linear subvariety of P of dimension n defined over K. Write xi...

متن کامل

Diophantine Inequalities in Function Fields

This paper develops the Bentkus-Götze-Freeman variant of the DavenportHeilbronn method for function fields in order to count Fq[t]-solutions to diagonal Diophantine inequalities in Fq((1/t)).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1968

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-14-4-333-345